Impact of hierarchical destination image on intentions to recommend
Minhaj Ikram¹,* Dr. Munawar Javed²

Abstract
This study investigates the destination image by examining its dimensions cognitive, affective and conative images, to develop deep understanding and how these dimensions affect intentions to recommend. For the purpose we have used data of 338 tourists. For analysis PLS-SEM technique through Smart-PLS software. The finding of study show that we use all dimensions are significant and they do influence intentions to recommend. The study adds to the knowledge body by not only studying the all dimensions of destination image separately in context of developing country. It also endorses the importance of conative image in complete the destination image and intensifying the behavioral intentions. Though in many past research conative is misunderstood as intentions and thus ignored in tourism research. The study is also vital for practitioner specially Destination Marketing Organizations (DMOs) to develop affective strategies for the growth of tourism.

Keywords: Destination Image, Cognitive Image, Affective Image, Conative Image, Tourism Growth.

¹ Faculty of Management Sciences, IQRA University, Karachi, Pakistan. * Corresponding author, email: minhajikram@gmail.com
² Faculty of Management Sciences, IQRA University, Karachi, Pakistan, email: waqar120@gmail.com

1. Introduction
In the recent era, the travel, and tourism industry has become a vital contributor to the economy (Abdillah et al., 2022). Thus, it has become one of the significant interests among researchers and economists worldwide. This industry has added more than 2 trillion USD to the world’s economy during the last decade, reaching a total worth of 8.8 trillion USD in 2018 through direct and indirect contributions. Tourism is vital for any country, along with its direct contribution. It adds a lot indirectly through the hotel industry, transportation, food, infrastructure, etc. While the tourism industry contributes significantly to generating foreign exchange, it also helps in uplifting the job market, alleviates poverty, and promotes global peace by creating cultural harmony (Adnan Hye & Ali Khan, 2013; Erol et al., 2022). Tourism accounts for 10.4% of the world economy, creates 319 million jobs, and is the fastest-growing industry, with a GDP growth rate of 3.9%, according to the report of the world travel & tourism council (James McDonald, 2022). However, in Pakistan, the tourism industry barely contributes 2.8% compared to the regional average of 3.5%. During the last decade, the global tourism industry has
witnessed tremendous growth, whereas the Pakistani tourism industry stayed stagnant, which worries researchers (Hina Shaikh, 2019; James McDonald, 2022). Pakistan is a country with rich potential in tourism. It has the most extensive and highest mountain ranges, beautiful landscapes, large deserts, historical and archaeological sites, religious and holy places, beautiful untapped beaches, and world-class natural destinations like Hunza Valley, Kumrat Valley, and Swat Valley. Despite of immense tourism potential in Pakistan, its growth is below the regional average (Arshad et al., 2018).

Tourism has grabbed much attention from researchers due to its importance for any country, especially tourism can contribute significantly to uplifting the economy of developing countries (Wu & Wu, 2019). However, grabbing a share of domestic and international travelers in the era of technology and cut-throat global competition takes work. Researchers have established that in this competitive global environment, it is crucial to build a solid destination image for tourism development in any region (Beerli & Martin, 2004; Tasci & Gartner, 2007). Numerous studies have focused on the formation of the destination image and factors influencing destination image.

Similarly, San Martín et al. (2019) studied the formation of destination image and visit intention as a chain reaction of customer-based brand equity, starting from awareness and leading to behavioral intentions towards a destination. Researchers have developed a consensus that destination image is vital for driving the behavioral intentions of both domestic and international travelers (Lee et al., 2005; Stylidis et al., 2015). Thus, destination image has remained the focus of researchers, and its formation studies by many researchers such as (Baloglu & McCleary, 1999; Kislali et al., 2020; San Martín & Del Bosque, 2008). However, despite the consensus among many researchers, the destination image remains a debatable topic, as the results of many studies lack consistency (Afshardoost & Eshaghi, 2020). According to Chaulagain et al. (2019), the destination image is a complex phenomenon that varies significantly across different destinations. Along with destination image, opinions of tourist can vital role is tourism promotion (Marques et al., 2021). In marketing context recommendation of consumer to potential consumer is always highly rated promotional tool, especially in era of internet its importance has increased significantly (Finn et al., 2009; Park et al., 2021). Thus to map the behavior and intentions of tourists, it is essential to study destination image contextually.

Researchers have identified three dimensions to comprehend the destination image better: cognitive, affective, and conative (Zhang et al., 2014). Boulding (1956, p. 6) claimed that image consists of three separate but hierarchically connected components named cognitive, affective, and conative, and characterized image as "what we believe to be true, our subjective knowledge." Whereas cognitive is defined as the way we think and process information (Baloglu and McCleary, 1999). The way we feel emotionally about any object is known as affective (Baloglu and Brinberg, 1997); and the desires and willingness to take action is explained as conation (Pike and Ryan, 2004). Overall these three components form the destination image (Stylidis, 2022). Many researchers have studied the destination as an overall image or higher-order construct using the cognitive, affective, and conative image as dimensions (Afshardoost & Eshaghi, 2020). However, due to the complexity of the construct, it is suggested to investigate the
dimensions separately (Lin et al., 2007; Stylidis et al., 2017). Despite many studies, most researchers have focused on cognitive and affective components of destination image while ignoring the critical component of the conative image (Afshardoost & Eshaghi, 2020). According to Bagozzi (1992), conation is the antecedent of behavior intention, which is the most crucial factor for destination marketing organizations (DMO). White (2014) argued that past researchers have misunderstood the conative image and used it interchangeably with intentions. Hence there is need to explore conative image.

The study attempts to contextually explain the role of destination image. The study focuses on three dimensions Cognitive Image, Affective Image, and Conative image to comprehend destination image in depth. Therefore, the purpose of study is to test the multi-dimensional and its impact on intentions to recommend for promotion from the perspective of developing countries i.e. Pakistan. The drive to the research question that, what is the impact of multi-dimensional destination image on intentions to recommend?

The developing countries are struggling to cash its destination image despite of abundance of beautify tourist destination. Therefore, the scope of this study is to understand the psychological processes of tourist, through which they develop image and reach the level of conation to motivate them to share their experiences with others. This the study is crucial for Destination Marketing Organization DMOs, policy makers and other destination marketing stakeholders to comprehend the role of destination image in influence intentions to recommend for developing tourism in the region.

Along with contributing to the knowledge body, this study will help governments, policymakers, and tourism marketers (DMOs) to formulate strategies to promote tourism, especially in developing countries. As a result, the study will contribute to job creation and creation of economic activities and also uncover tourist places to tourist.

2. Literature Review

2.1 Theoretical Background

Learning, as envisioned by the SCT, occurs in a social context via the dynamic and reciprocal interaction between the learner, their environment, and their behaviors. Bandura’s beliefs have been refined as a result of subsequent research. Differential association theory was combined with principles of behavioral and cognitive learning in Akers’ (Akers, 1998) attempt to explain aberrant behavior. This idea emphasized the significance of both the learner and their surroundings. It postulated that antisocial behavior might be learned in the same manner that conventional normative behavior is. Bandura's (1986) Social Cognitive Theory (SCT) is another significant advance in SLT because of the attention it pays to the significance of learners’ mental processes. As a theory, it dates back to 1986. The application of SLT in online and digital contexts has been the focus of recent research. The rise of social media and online communities has prompted researchers to examine the nature of social learning in these contexts (Tausczik et al., 2020). In current study SCT has been used to check the interactive nature of cognitive image, affective image, conative image and their impact of behavioral intentions.

2.1 Conceptualization of Model

Destination image is considered to be one of the most important predictor for the growth of tourism industry (Afshardoost & Eshaghi, 2020). According
to Liang and Lai (2022), the image of a location might have an effect on how competitive the destination is in the market. In order for local destinations to be competitive in the tourism industry, it is necessary for them to develop strong destination brand. (Duan & Lai. 2022). Destination image explained as the tourist perceptions about the place. Similarly, according to Hunt (1975) the image of any place or destination perceived by tourist is the destination image. It is also considered as the mental aura about any place in customer mind (Bigne et al., 2001). Tasci and Gartner (2007) further explained destination image as mental process, thoughts, attitudes, emotions, visualization and willingness to pursue the destination. The destination image is a multifaceted phenomenon, which is based on various components (Chaulagain et al., 2019). Due to the complexity of destinations image many researchers have conceptualized it as multidimensional (Baloglu & McCleary, 1999; Beerli & Martin, 2004). Most researchers describe destination image based on two dimensions which are cognitive image and affective image, however some researchers has indicated that destination image is incomplete without the third demission which is conative image (Baloglu & McCleary, 1999; Beerli & Martin, 2004; Gartner, 1994). The cognitive dimension of destination image related to thinking, reasoning and rationalization based on the pinpoint and tangible attributes of destination (Baloglu & McCleary, 1999). In contrast affective image is soft emotional side of consumer perception based on visual appeal, feelings, expressions, love, pleasure and enjoyment (Baloglu et al., 2014). Such feelings can be positive, negative or neutral (Arslanova et al., 2017). The third component conative image, which is overlooked by researchers, is defined as the willingness construct (Pike & Ryan, 2004). Conative image is the reediness or desire of the tourist related to destination based on the cognitive and affective components of destination image. Conative image is described as intentions by (Gartner, 1994), whereas Stylos and Bellou (2019) has conceptualize it at the same level as of cognitive and affective images, some researcher have termed conation as loyalty (Anisimova & Weiss 2023). Past studies lacks consensus in the role of conation. While in current study SCT theory has been used to check the interactive nature of hierarchical components of destination image i.e cognitive image, affective image and conative image. Thus in this study the conceptual framework is based on the components of destination image to gauge to intentions to recommend.

2.2 Hypotheses Development

2.2.1 The relationship between Cognitive Image and Affective Image

Many studies have endorsed that the cognitive component strongly correlates with an affective image (Agapito et al., 2013; Stern & Krakover, 1993). According to Beerli and Martin (2004) cognitive component is the antecedent of the affective component. Keown et al. (1984) in their study examined American tourist perception regarding retail stores of twelve selected countries, in which their findings suggested that overall destination image is based on the correlation of its individual components such as cognitive and affective images. Lazarus (1991) also found that cognitive image affects an affective image in the context of emotion and adoption. In a study related to the food industry. Kim and Moon (2009)
identified that a consumer's cognitive response helps in the formation of an emotional response which leads to intentions. Lin et al. (2007) confirm in their study that cognitive image tends to impact affective image. Woosnam et al. (2020) studied the hierarchical structure of the destination image, and after examination, they also endorsed the significant positive impact of cognitive image on the affective image. Therefore, we propose the following hypothesis:

H1: The cognitive image has a significant positive impact on the Affective Image.

2.2.2 The Relationship of Conative image with Cognitive and Affective Image

The conative image is a component of the destination image. Conative image is a behavioral construct and vastly relies on the evaluation of cognitive and affective image (Bagozzi, 1992; Gartner, 1994). According to Bagozzi (1992), conation is the antecedent of behavioral intention. White (2014) has also classified conation as similar to willingness and intention to act. Many studies have established in the tourism context that cognitive and affective image both contributes positively to developing behavior intention (Akgün et al., 2020). Gartner (1994) highlighted the same in the study: conative image predicts tourist behavior developed through cognitive and affective images. Truong and McColl (2011) tested the hierarchical nature of destination image and they also found correlation of cognitive image with affective and conative images. Based on the literature discussed, the following hypotheses are proposed:

H2: The Cognitive image has a significant positive impact on the Conative Image.

H3: The Affective image has a significant positive impact on the Conative Image.

2.2.6 The relationship between Cognitive and Affective Image with Intentions to Recommend

A study utilizing the SOR theory confirms that positive cognition results in evoking a positive attitude toward the attitude object; thus, it induces behavioral responses (Bitner, 1992). According to Kim and Moon (2009), perceived service quality as a cognitive response showed promising results in forming revisit intentions to themed restaurants. A study related to the tourist behavior towards the destination image of the island of Mauritius found that cognitive image is not only found to influence visit intention, but it is also vital for developing intentions to recommend (Prayag, 2009). According to Wang et al. (2023a), affective image, in addition to cognitive image, can have an effect on recommendation intention, word-of-mouth, and revisit intention. Another study concluded similar results while exploring the visit behavior related to urban tourism (Papadimitriou et al., 2018). Along with the cognitive image, the affective image was also found to influence behavioral intentions (Baloglu, 2000). Sharma and Nayak (2019) also confirm the role of affective components such as pleasure, joy, attractiveness, and excitement in forming tourist intentions. Li and Kaplanidou (2013) also explored the impact of cognitive and affective image related 2008 Olympic Games and found perceptual differences among nationalities. In contrast, Del Bosque and San Martín (2008), in their study about destination locality, endorsed the connection between the word of mouth and affective image. Based on these studies, it can be concluded that cognitive and affective images impact behavioral intentions, such as intentions to
visit and recommend. Consequently, the following hypotheses are proposed.

H4: The cognitive image has a significant positive impact on the intention to recommend.

H5: The affective image has a significant positive impact on the intention to recommend.

2.2.7 Conative Image with Intention to Intention to recommend.

In past research conative component is undervalued in developing destination image (Woosnam et al., 2020). However, Gartner (1994) strongly advocated conation as an essential factor while conceptualizing destination image. Michael et al. (2018) also endorsed it as a component of destination image and claimed it is linked with loyalty. Bagozzi (1992) has explained the conative construct as the antecedent of behavioral intention to perform a specific action. Conative image is behavioral construct which can lead the further behaviors of tourist such as intentions to revisit and intentions to recommend (Wang et al. 2023b). A study related to tourism found a relationship between a conative component with the visit intention of the destination and the intention to recommend it (Stepchenkova & Mills, 2010). Stylos et al. (2016) in their study advocated that conative image as part of holistic image which later contributes towards tourist intentions. In contract, Stylos et al. (2017) in a study not only endorsed conative image as part of holistic image, but also found direct influence of conative image on revisit intentions. Thus, based on above literature following hypothesis is proposed:

H6: The Conative image has a significant positive impact on the intention to recommend.

Figure 1

Proposed research framework
3. Research methodology

The aim of this study is to individually examine the three dimensions of destination image which are cognitive image, affective image and conative image. Further the aim of study is to investigate the image of these dimensions in influences intentions to recommend the destination to others.

The study is explanatory in nature to understand human perception formation and its effects on behavior. Thus, a quantitative approach is used to conduct this research and to analyze the empirical interactions of hypothesized relationships. A summary of the research methodology is illustrated in Figure 2.

![Figure 2: Research Methodology](image)

Research Methodology

3.1 Research design

Since our study is empirical in nature, thus correlational research design is employed to conclude the connection among the constructs and propose hypotheses through the help of statistical techniques. To test the hypotheses proposed in our conceptual framework and study the correlations, we have used structural equation modelling.

3.2 Population, sampling, and sampling technique

The study aims to examine the tourist perceptual images and their role in developing intentions to recommend. For the purpose we have targeted audience who are travelers or experience the destinations. The target audience was approached through social media such as Facebook, Instagram, etc. There are communities related to tourism on these social sites. The individuals were approached through purposive sampling and self-administrated questionnaire were distributing using google forms. This enabled us to gather a total of 355 responses and after data screening 338 valid responses were kept for analysis.
3.3 Instrumentation and data collection

As discussed above, we use a self-administered survey questionnaire. The instrument was adopted from previous studies. Further the instrument was validated by language expert to ensure its suitability for target audience. Complete instrument was based on a 5-point Likert scale. The sources of instrument are illustrated in Table 1. The distribution of the questionnaire resulted in the collection of 355 responses. After data screening, 338 valid data are used for the data analysis. The demographics of respondents are presented in Table 2.

Table 1
Source of Instrument

<table>
<thead>
<tr>
<th>Constructs</th>
<th>No. of Items</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attractive Conditions</td>
<td>6</td>
<td>Stylos et al. (2016)</td>
</tr>
<tr>
<td>Must-be Conditions</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Appealing Activities</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Natural Environment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Affective Image</td>
<td>7</td>
<td>Stylos et al. (2016)</td>
</tr>
<tr>
<td>Conative Image</td>
<td>7</td>
<td>Stylos et al. (2016)</td>
</tr>
<tr>
<td>Intention to recommend</td>
<td>4</td>
<td>Prayag et al. (2017), Eid et al. (2019)</td>
</tr>
</tbody>
</table>

4. Results and data analysis

4.1 Overview

In this section of paper, analysis of data date is done using Partial Least Square-Structure Equation Modelling (PLS-SEM) technique to examine the validity of outer and inner model. Further to test hypotheses relationships.

4.1.1 Use of PLS-SEM

According to Hair et al. (2010), structural equation modeling (SEM) is a highly reliable technique where multiple exogenous and endogenous variables can be regressed simultaneously. In recent years, partial least square–structural equation modeling (PLS-SEM) has gained much attention from researchers due to its inherent robustness and ability to examine complex models having a high number of interactions among constructs. Therefore, in the study, data is analyzed using PLS-SEM. The PLS-SEM technique analyzes the model's inner and outer measurement by using partial regression and structural model through ordinary least square separately, which helps PLS-SEM to compute better results with small sample sizes and complex models (Hair et al., 2019).

Moreover, according to Sarstedt et al. (2016), this technique is recommended when the data is not normal, and the sample size is relatively low. In this study, analysis of the data is executed by using well-known software named Smart PLS (Hair Jr et al., 2014; Ringle, 2005).
4.2 Measurement, outer model

In this study, the reliability and construct validity of the instrument is established by analyzing content, convergent, and discriminant validity.

4.2.1 Content validity

The content validity of the outer model was assessed using composite reliability. Recommended values for CR should be greater than 0.7 (Fornell & Larcker, 1981; Nunnally &
Bernstein, 1994). Observed variables not meeting the recommended criteria were removed. Results are illustrated in Table 3, where all the items have loaded more than 0.7, and confirm the standards.

Table 3
Convergent validity and Reliability

<table>
<thead>
<tr>
<th>Construct</th>
<th>Items</th>
<th>Loadings</th>
<th>P-Values</th>
<th>Cronbach's Alpha</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affective Image</td>
<td>AI1</td>
<td>0.777</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI2</td>
<td>0.791</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI3</td>
<td>0.741</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI4</td>
<td>0.864</td>
<td>0.000</td>
<td>0.910</td>
<td>0.928</td>
<td>0.650</td>
</tr>
<tr>
<td></td>
<td>AI5</td>
<td>0.837</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI6</td>
<td>0.781</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI7</td>
<td>0.846</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI10</td>
<td>0.653</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI11</td>
<td>0.791</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI12</td>
<td>0.726</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI13</td>
<td>0.700</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI15</td>
<td>0.765</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI16</td>
<td>0.718</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI17</td>
<td>0.727</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Image</td>
<td>CI18</td>
<td>0.777</td>
<td>0.000</td>
<td>0.941</td>
<td>0.948</td>
<td>0.550</td>
</tr>
<tr>
<td></td>
<td>CI19</td>
<td>0.747</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI20</td>
<td>0.792</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI4</td>
<td>0.798</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI5</td>
<td>0.676</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI7</td>
<td>0.645</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI8</td>
<td>0.804</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI9</td>
<td>0.774</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CON1</td>
<td>0.807</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CON2</td>
<td>0.822</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CON3</td>
<td>0.696</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conative image</td>
<td>CON4</td>
<td>0.825</td>
<td>0.000</td>
<td>0.915</td>
<td>0.932</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td>CON5</td>
<td>0.860</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CON6</td>
<td>0.822</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CON7</td>
<td>0.860</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RI1</td>
<td>0.893</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RI2</td>
<td>0.881</td>
<td>0.000</td>
<td>0.921</td>
<td>0.944</td>
<td>0.808</td>
</tr>
<tr>
<td></td>
<td>RI3</td>
<td>0.919</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RI4</td>
<td>0.902</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.2 Convergent validity

To confirm convergent validity, we must ensure that observed variables are related to their constructs. Desired values can be tested using three techniques: factor loadings, composite reliability, and average variance (Hair et al., 2010). To confirm factor loading, the loading values are analyzed, which should be, equal to or more than 0.5 and statistically significant (Truong & McColl,
2011). In the second step, we have analyzed Cronbach’s Alpha to check the reliability of instrument which is suggested to be equal or higher than 0.7, whereas all values of Cronbach’s Alpha are between 0.910 to 0.941 which adequately meet the criteria. To analyze the consistency of the observed variables with latent variables we have use Composite reliability (CR) (Hair et al., 2010). CR is considered acceptable at 0.7 (Fornell & Larcker, 1981; Hair et al., 2010). In the current study, composite reliability values range from 0.928 to 0.948, which are positively above the recommended values. To further insure the fitness of model we examine the average variance extracted (AVE). It is defined as a level of common variance between the items of the latent variable and suggested values are equal to 0.5 or above. (Fornell & Larcker, 1981; Hair et al., 2010).

In our study AVE values of all constructs are between 0.550 to 0.808, which significantly meets the threshold, same is shown in table 3, which are in line with the suggested criterion. Consequently, all three methods complying with recommended thresholds, which ensures convergent validity of outer model. All above discussed results are exhibited in table 3.

Table 4
Discriminant Validity

<table>
<thead>
<tr>
<th>Construct</th>
<th>R-Square</th>
<th>Q-Square</th>
<th>Affective Image</th>
<th>Cognitive Image</th>
<th>Conative image</th>
<th>Intentions to recommend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affective Image</td>
<td>0.349</td>
<td>0.222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Image</td>
<td>0.590</td>
<td>(0.637)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conative image</td>
<td>0.450</td>
<td>0.291</td>
<td>(0.578)</td>
<td>0.638</td>
<td>(0.682)</td>
<td></td>
</tr>
<tr>
<td>Intentions to recommend</td>
<td>0.574</td>
<td>0.443</td>
<td>(0.630)</td>
<td>0.675</td>
<td>(0.720)</td>
<td>0.899</td>
</tr>
</tbody>
</table>

Note: Values in bracket shows HTMT values.

4.2.3 Discriminant validity

Discriminant validity is another technique to validate the outer model. In this method, we confirm that the set of the observed variable differs from other latent variables in a research model. For discriminant validity, the square root of AVE is analyzed, and the correlation among constructs is checked (Chin, 2010; Fornell & Larcker, 1981). As shown in Table 4 that diagonal line values are higher than other values in their respective rows and columns, which is evidence that discriminant validity is confirmed. To further endorsed the discriminant validity, the heterotrait-monotrait ratio of correlations (HTMT) estimates is used. It is recommended that HTMT values should be at most 0.85 (Henseler et al., 2015).
that all values are within the recommended range; hence, the discriminant validity is established.

4.3 Structural model and hypothesis testing

In the previous section, satisfactory goodness of fit for the outer model is established. In this section, we have examined the standardized path coefficients to test the hypothesized relationships proposed in the study. For this purpose, SmartPls 3.2.4 has been used. In the said software bootstrapping technique is employed to confirm the statistical significance of path coefficients (Chin, 1998); The results of the path analysis are presented in Figure 3. The detailed results of hypothesis testing are tabulated in Table 5.

The conceptual model was found highly significant with acceptance of all proposed hypothesized relationships with higher than 95 percent confidence level. Specifically, H1 revealed a considerable favorable influence of cognitive image on affective image, leading to the acceptance of the hypothesis ($\beta = 0.590$, $p < 0.000$). The findings of the first hypothesis are in agreement with the existing body of research (Agapito et al., 2013; Woosnam et al., 2020). H2 Cognitive image was also found positively significant on Conative Image with values of ($\beta = 0.487$, $p < 0.000$). Although prior literature suggests that cognitive image has a major effect on conation, recent studies have found that the opposite is true (Woosnam et al., 2020). Conation refers to the readiness to do action. The current study's findings provide credence to the claims of (Agapito et al., 2013; Stylos et al., 2017; Stylidis, 2022), among others, that a mental picture of a traveler might stimulate feelings of excitement and the want to take action. H3 Cognitive Image relationship with intention to recommend also found significant with values of $(\beta = 0.340$, $p < 0.000$). Results from the majority of investigations support the concept (Kim et al., 2020; Stylos et al., 2017; Stylidis, 2022). The findings also support the idea that cognitive image plays a role in shaping behavioral intentions. H4 Affective Image positively correlates with Conative image having values $(\beta = 0.257$, $p < 0.005$). Agapito et al. (2013) and Stylidis (2022) both discover that combining an emotional and a conative picture yields similar outcomes. This demonstrates that positive emotions associated with the place do help to generate interest and enthusiasm. H5 Affective Image on Intentions to Recommend found significant with values of $(\beta = 0.189$, $p < 0.022$). This result is also consistent with the study of (Kim et al., 2020), this is concluded that affection plays significant role is share the experiences with others. Lastly H6 Conative Image was also found to statistical significant with the values of $(\beta = 0.350$, $p < 0.000$), but is has shown the greatest strength to influence intentions to recommend in comparison of other variables. This explains that conation lies before the intentions and loyalty with the ability to increase the strength of consumer behavioral intentions.

4.3.1 Predictive relevance of the model

To examine the predictive power & relevancy of the inner model, R square and Q square (Cross-Validated Redundancy) are employed. A value of R square higher than 26% is considered significant (Cohen, 1988). In Table 4, we can see that 34.9% of the Affective Image of the tourists are explained by individuals' Cognitive images or perceptions. In contrast Cognitive Image and Affective images are able to predict conative image by 45%. Whereas Intention to recommended explained 57.4% by
cognitive, affective and conative images. The R-square of all the predicted variables is greater than 26%. These results indicate that the factors used in this study are highly predictive. Further to ensure the accuracy of model we have examined predicted relevancy of constructs using the cross-validated redundancy measure technique, also known as Q-square (Geisser, 1974). As shown in table 4, all Q-square values are greater than 0, which endorses the predictive relevancy of our model.

![Figure 3 Measurement Model](image)

* ~ p-value<0.01; ** ~ p-value<0.05; * ~ p-value<0.1; ns ~ not supported

Table 5

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Estimates</th>
<th>S.D</th>
<th>T Values</th>
<th>P Values</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 Cognitive Image -> Affective Image</td>
<td>0.590</td>
<td>0.050</td>
<td>11.898</td>
<td>0.000</td>
<td>Accept</td>
</tr>
<tr>
<td>H2 Cognitive Image -> Conative image</td>
<td>0.487</td>
<td>0.096</td>
<td>5.046</td>
<td>0.000</td>
<td>Accept</td>
</tr>
<tr>
<td>H3 Affective Image -> Conative image</td>
<td>0.257</td>
<td>0.090</td>
<td>2.842</td>
<td>0.005</td>
<td>Accept</td>
</tr>
<tr>
<td>H4 Cognitive Image -> Intentions to recommend</td>
<td>0.340</td>
<td>0.084</td>
<td>4.071</td>
<td>0.000</td>
<td>Accept</td>
</tr>
<tr>
<td>H5 Affective Image -> Intentions to recommend</td>
<td>0.189</td>
<td>0.083</td>
<td>2.284</td>
<td>0.022</td>
<td>Accept</td>
</tr>
<tr>
<td>H6 Conative image -> Intentions to recommend</td>
<td>0.350</td>
<td>0.077</td>
<td>4.539</td>
<td>0.000</td>
<td>Accept</td>
</tr>
</tbody>
</table>

5. Conclusion

The study investigated the role of three dimension of destination image. Such as we have examined the impact of cognitive image in formation of affective and conative image. Similarly impact of affective image was also studied in creating conative image. Further the study also examined the contribution for all three dimensions in triggering the tourist intention to share their experience with other. Past studies confirms that opinions and experience of tourist are vital for
influencing intentions of new tourists (Eid et al., 2019). The results of our study revealed that all proposed hypotheses are significant. This study mainly focused on the influence of cognitive image, affective image and conative image on the consumers’ psychological impressions that trigger their intentions. Tourist opinions are one of the most influential sources in this electronic era to influence travelers in their mind-mapping. They provide videos of the critical locations, demonstrate the location with their own experience, and provide detailed feedback on the tourist spot. Thus these recommendations by tourist helps prospective tourist in creating a perceived image of the particular tourist’s destination. Visitors can build perception, compare potential tourist destinations, and plan their trip accordingly. This study provides a systematic perception development framework based on past studies (Kim et al., 2020; Kislali et al., 2020).

Likewise, the study reveals that the cognitive image influence affective image and conative images of the tourist, which testifies to previous studies (Woosnam et al., 2020). In addition, this study empirically shows that cognitive, affective and conative images enormously contribute to converting these into tourist intentions to recommend the destination to other potential tourist. Moreover, this study reveals that the affective image of a tourist directly and positively correlated with the cognitive image of the subject. Cognitive & affective image is found to positively influence behavioral intention through the path of conative image as well. This finding is a critical contribution. It establishes the importance of conation in tourism research, whereas in many past studies, conative image is disregarded (Stylos et al., 2016).

5.1 Theoretical implications

The study has made few important contributions to tourism literature image. In earlier studies it was noted that destination image is complex phenomena which needs to be study contextually (Chaulagain et al., 2019). Despite lot of work on destination image, the literature lacked hierarchical understanding (Woosnam et al., 2020). In this study the question was raised to check the impact of multidimensional destination image through its hierarchal components including cognitive image, affective image and especially conative image, as conative image is previously overlooked in research in influencing intentions to recommend. The results of study clearly endorsed the hierarchy and interaction between cognitive, affective and conative images.

Moreover, study also confirmed that all components contributes in intentions to recommend the destination to their friends and family, whereas conative image turned out to be the most significant contributor in enhance word of mouth. The study was conducted in Pakistan; thus its results are generalizable in context on developing countries. In our study all proposed hypotheses were found significant, which endorses the impact of destination image components in developing intentions to recommend.

5.2 Managerial implications

After the limits imposed by COVID19 were eased, there was a significant uptick in the number of people traveling all over the world. Tourists are interested in visiting new places, but they nevertheless have some lingering trepidation in relation to new and generally under-explored
locations throughout the world. The vast majority of visitors are more interested in seeing well-known locations than in taking part in the act of discovery itself. Because of this, it is difficult for developing countries to entice visitors to visit and spend their leisure time in their country, despite the fact that there are many lovely places to explore. In order to build interest among prospective clients, it is necessary to organize promotional and communicational activities that are both tangible and relevant to the tourist location. It is possible for the recommendations of other travelers on a destination to have a significant role in the expansion of tourism. A recommendation from a third party is also widely acknowledged to be an essential promotional technique. As a result, the findings of our research indicate that if DMOs operate on cognitive image by objectifying the location and creating emotional and pleasure touchpoints for visitors. Not only will it assist in the development of a powerful desire in the form of conation, but it will also stimulate intents to suggest other people. These proposals will bring in more tourists, which will contribute to the expansion of the tourism industry.

5.3 Social and contextual Implications

Pakistan is a growing nation with a wide variety of stunning tourist sites, including some of the world's tallest mountain ranges, culturally rich and historically significant cities, and year-round tourist hotspots. The tourism sector may benefit greatly from these locations, yet only a fraction of the population actually visits. There might be a number of causes for this. Examples of factors that contribute to this poor impression include law and order problems, geopolitical unpredictability, and a lack of infrastructure. While these metrics have all shown steady improvement over the past few years, the government and tourism organizations are still devoting significant resources to further enhancing the visitor experience. However, sales growth still has to be more upbeat. Promotional actions designed to attract visitors might be more effective if informed by this study. These parties have a vested interest in fostering a positive public picture of their location because they stand to gain financially and socially as a result of more tourism.

5.4 Limitations and future directions

Even though current research makes substantial contributions to theory and practices. However, the scope of the study was limited to the context of developing countries. Hence it is vital to replicate this work in different settings. Future studies in this area may focus on the specific location to get better insights into the tourists’ perception. The research can even be improved in the future by including a few more relevant variables for comprehensive understanding, such as destination attachment and visit intentions. Future studies may also focus on antecedents of destination image. Moreover, the indirect effects of the variables and mediation analysis can also help acquire more information from similar studies.

References

Chaulagain, S., Wiitala, J., & Fu, X. (2019). The impact of country image and destination
image on US tourists’ travel intention.
Journal of destination marketing & management, 12, 1-11.

Kim, M. J., Lee, C.-K., & Jung, T. (2020). Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-

Ringle, C. M. W., Sven; Will, Alexander. (2005). SmartPLS 2.0. SmartPLS 2.0.

